Что значит "двойная связь". Органическая химия

>С=С<, > = -, >С=О, > = , - = -, - Н=О и др. При этом подразумевается, что одна пара электронов с sp 2 или sp - гибридизованными орбиталями образует s-связь (см. рис. 1 ), электронная плотность которой сосредоточена вдоль межатомной оси; s-связь подобна простой связи. Другая пара электронов с р -орбиталями образует p-связь, электронная плотность которой сосредоточена вне межатомной оси. Если в образовании Двойная связь принимают участие атомы или V группы периодической системы, то эти атомы и атомы, связанные с ними непосредственно, расположены в одной плоскости; валентные углы равны 120°. В случае несимметричных систем возможны искажения молекулярной структуры. Двойная связь короче простой связи и характеризуется высоким энергетическим барьером внутреннего вращения; поэтому положения заместителей при атомах, связанных Двойная связь , неэквивалентны, и это обусловливает явление геометрической изомерии . Соединения, содержащие Двойная связь , способны к реакциям присоединения. Если Двойная связь электронно-симметрична, то реакции осуществляются как по радикальному (путем гомолиза p-связи), так и по ионному механизмам (вследствие поляризующего действия среды). Если электроотрицательности атомов, связанных Двойная связь , различны или если с ними связаны различные заместители, то p-связь сильно поляризована. Соединения, содержащие полярную Двойная связь , склонны к присоединению по ионному механизму: к электроноакцепторной Двойная связь легко присоединяются нуклеофильные реагенты, а к электронодонорной Двойная связь - электрофильные. Направление смещения электронов при поляризации Двойная связь принято указывать стрелками в формулах, а образующиеся избыточные заряды - символами d - и d + . Это облегчает понимание радикального и ионного механизмов реакций присоединения:

В соединениях с двумя Двойная связь , разделёнными одной простой связью, имеет место сопряжение p-связей и образование единого p-электронного облака, лабильность которого проявляется вдоль всей цепи (рис. 2 , слева). Следствием такого сопряжения является способность к реакциям 1,4-присоединения:

Если три Двойная связь сопряжены в шестичленном цикле, то секстет p-электронов становится общим для всего цикла и образуется относительно стабильная ароматическая система (см. рис. 2, справа). Присоединение к подобным соединениям как электрофильных, так и нуклеофильных реагентов энергетически затруднено. (См. также

Химическая связь

Все взаимодействия, приводящие к объединению химических частиц (атомов, молекул, ионов и т. п.) в вещества делятся на химические связи и межмолекулярные связи (межмолекулярные взаимодействия).

Химические связи - связи непосредственно между атомами. Различают ионную, ковалентную и металлическую связь.

Межмолекулярные связи - связи между молекулами. Это водородная связь, ион-дипольная связь (за счет образования этой связи происходит, например, образование гидратной оболочки ионов), диполь-дипольная (за счет образования этой связи объединяются молекулы полярных веществ, например, в жидком ацетоне) и др.

Ионная связь - химическая связь, образованная за счет электростатического притяжения разноименно заряженных ионов. В бинарных соединениях (соединениях двух элементов) она образуется в случае, когда размеры связываемых атомов сильно отличаются друг от друга: одни атомы большие, другие маленькие - то есть одни атомы легко отдают электроны, а другие склонны их принимать (обычно это атомы элементов, образующих типичные металлы и атомы элементов, образующих типичные неметаллы); электроотрицательность таких атомов также сильно отличается.
Ионная связь ненаправленная и не насыщаемая.

Ковалентная связь - химическая связь, возникающая за счет образования общей пары электронов. Ковалентная связь образуется между маленькими атомами с одинаковыми или близкими радиусами. Необходимое условие - наличие неспаренных электронов у обоих связываемых атомов (обменный механизм) или неподеленной пары у одного атома и свободной орбитали у другого (донорно-акцепторный механизм):

а) H· + ·H H:H H-H H 2 (одна общая пара электронов; H одновалентен);
б) NN N 2 (три общие пары электронов; N трехвалентен);
в) H-F HF (одна общая пара электронов; H и F одновалентны);
г) NH 4 + (четыре общих пары электронов; N четырехвалентен)
    По числу общих электронных пар ковалентные связи делятся на
  • простые (одинарные) - одна пара электронов,
  • двойные - две пары электронов,
  • тройные - три пары электронов.

Двойные и тройные связи называются кратными связями.

По распределению электронной плотности между связываемыми атомами ковалентная связь делится на неполярную и полярную . Неполярная связь образуется между одинаковыми атомами, полярная - между разными.

Электроотрицательность - мера способности атома в веществе притягивать к себе общие электронные пары.
Электронные пары полярных связей смещены в сторону более электроотрицательных элементов. Само смещение электронных пар называется поляризацией связи. Образующиеся при поляризации частичные (избыточные) заряды обозначаются + и -, например: .

По характеру перекрывания электронных облаков ("орбиталей") ковалентная связь делится на -связь и -связь.
-Связь образуется за счет прямого перекрывания электронных облаков (вдоль прямой, соединяющей ядра атомов), -связь - за счет бокового перекрывания (по обе стороны от плоскости, в которой лежат ядра атомов).

Ковалентная связь обладает направленностью и насыщаемостью, а также поляризуемостью.
Для объяснения и прогнозирования взаимного направления ковалентных связей используют модель гибридизации.

Гибридизация атомных орбиталей и электронных облаков - предполагаемое выравнивание атомных орбиталей по энергии, а электронных облаков по форме при образовании атомом ковалентных связей.
Чаще всего встречается три типа гибридизации: sp -, sp 2 и sp 3 -гибридизация. Например:
sp -гибридизация - в молекулах C 2 H 2 , BeH 2 , CO 2 (линейное строение);
sp 2 -гибридизация - в молекулах C 2 H 4 , C 6 H 6 , BF 3 (плоская треугольная форма);
sp 3 -гибридизация - в молекулах CCl 4 , SiH 4 , CH 4 (тетраэдрическая форма); NH 3 (пирамидальная форма); H 2 O (уголковая форма).

Металлическая связь - химическая связь, образованная за счет обобществления валентных электронов всех связываемых атомов металлического кристалла. В результате образуется единое электронное облако кристалла, которое легко смещается под действием электрического напряжения - отсюда высокая электропроводность металлов.
Металлическая связь образуется в том случае, когда связываемые атомы большие и потому склонны отдавать электроны. Простые вещества с металлической связью - металлы (Na, Ba, Al, Cu, Au и др.), сложные вещества - интерметаллические соединения (AlCr 2 , Ca 2 Cu, Cu 5 Zn 8 и др.).
Металлическая связь не обладает направленностью насыщаемостью. Она сохраняется и в расплавах металлов.

Водородная связь - межмолекулярная связь, образованная за счет частичного акцептирования пары электронов высокоэлектроотрицательнного атома атомом водорода с большим положительным частичным зарядом. Образуется в тех случаях, когда в одной молекуле есть атом с неподеленной парой электронов и высокой электроотрицательностью (F, O, N), а в другой - атом водорода, связанный сильно полярной связью с одним из таких атомов. Примеры межмолекулярных водородных связей:

H—O—H ··· OH 2 , H—O—H ··· NH 3 , H—O—H ··· F—H, H—F ··· H—F.

Внутримолекулярные водородные связи существуют в молекулах полипептидов, нуклеиновых кислот, белков и др.

Мерой прочности любой связи является энергия связи.
Энергия связи - энергия необходимая для разрыва данной химической связи в 1 моле вещества. Единица измерений - 1 кДж/моль.

Энергии ионной и ковалентной связи - одного порядка, энергия водородной связи - на порядок меньше.

Энергия ковалентной связи зависит от размеров связываемых атомов (длины связи) и от кратности связи. Чем меньше атомы и больше кратность связи, тем больше ее энергия.

Энергия ионной связи зависит от размеров ионов и от их зарядов. Чем меньше ионы и больше их заряд, тем больше энергия связи.

Строение вещества

По типу строения все вещества делятся на молекулярные и немолекулярные . Среди органических веществ преобладают молекулярные вещества, среди неорганических - немолекулярные.

По типу химической связи вещества делятся на вещества с ковалентными связями, вещества с ионными связями (ионные вещества) и вещества с металлическими связями (металлы).

Вещества с ковалентными связями могут быть молекулярными и немолекулярными. Это существенно сказывается на их физических свойствах.

Молекулярные вещества состоят из молекул, связанных между собой слабыми межмолекулярными связями, к ним относятся: H 2 , O 2 , N 2 , Cl 2 , Br 2 , S 8 , P 4 и другие простые вещества; CO 2 , SO 2 , N 2 O 5 , H 2 O, HCl, HF, NH 3 , CH 4 , C 2 H 5 OH, органические полимеры и многие другие вещества. Эти вещества не обладают высокой прочностью, имеют низкие температуры плавления и кипения, не проводят электрический ток, некоторые из них растворимы в воде или других растворителях.

Немолекулярные вещества с ковалентными связями или атомные вещества (алмаз, графит, Si, SiO 2 , SiC и другие) образуют очень прочные кристаллы (исключение - слоистый графит), они нерастворимы в воде и других растворителях, имеют высокие температуры плавления и кипения, большинство из них не проводит электрический ток (кроме графита, обладающего электропроводностью, и полупроводников - кремния, германия и пр.)

Все ионные вещества, естественно, являются немолекулярными. Это твердые тугоплавкие вещества, растворы и расплавы которых проводят электрический ток. Многие из них растворимы в воде. Следует отметить, что в ионных веществах, кристаллы которых состоят из сложных ионов, есть и ковалентные связи, например: (Na +) 2 (SO 4 2-), (K +) 3 (PO 4 3-), (NH 4 +)(NO 3-) и т. д. Ковалентными связями связаны атомы, из которых состоят сложные ионы.

Металлы (вещества с металлической связью) очень разнообразны по своим физическим свойствам. Среди них есть жидкость (Hg), очень мягкие (Na, K) и очень твердые металлы (W, Nb).

Характерными физическими свойствами металлов является их высокая электропроводность (в отличие от полупроводников, уменьшается с ростом температуры), высокая теплоемкость и пластичность (у чистых металлов).

В твердом состоянии почти все вещества состоят из кристаллов. По типу строения и типу химической связи кристаллы ("кристаллические решетки") делят на атомные (кристаллы немолекулярных веществ с ковалентной связью), ионные (кристаллы ионных веществ), молекулярные (кристаллы молекулярных веществ с ковалентной связью) и металлические (кристаллы веществ с металлической связью).

Задачи и тесты по теме "Тема 10. "Химическая связь. Строение вещества"."

  • Типы химической связи - Строение вещества 8–9 класс

    Уроков: 2 Заданий: 9 Тестов: 1

  • Заданий: 9 Тестов: 1

Проработав эту тему, Вы должны усвоить следующие понятия: химическая связь, межмолекулярная связь, ионная связь, ковалентная связь, металлическая связь, водородная связь, простая связь, двойная связь, тройная связь, кратные связи, неполярная связь, полярная связь, электроотрицательность, поляризация связи, - и -связь, гибридизация атомных орбиталей, энергия связи.

Вы должны знать классификацию веществ по типу строения, по типу химической связи, зависимость свойств простых и сложных веществ от типа химической связи и типа "кристаллической решетки".

Вы должны уметь: определять тип химической связи в веществе, тип гибридизации, составлять схемы образования связей, пользоваться понятием электроотрицательность, рядом электроотрицательностей; знать как меняется электроотрицательность у химических элементов одного периода, и одной группы для определения полярности ковалентной связи.

Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


Рекомендованная литература:
  • О. С. Габриелян, Г. Г. Лысова. Химия 11 кл. М., Дрофа, 2002.
  • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001.

Этилен для органической химии — это уже, пожалуй, не кирпичик, а целый блок. Молекула этилена состоит из двух атомов углерода и четырех атомов водорода.
Как же построен этилен? Ведь во всех органических соединениях углерод должен быть четырехвалентным, а в молекуле этилена каждый углеродный атом связан с другим углеродом и двумя водородами, т. е. как бы трехвалентен.
Нет, никакого нарушения принципа четырех-валентности углерода в молекуле этилена не наблюдается: два атома углерода связаны между собой не простой, как в этане, а двойной связью. Каждая валентность обозначается чертой, и если соединить два атома углерода двумя черточками, то мы сохраним углерод четырехвалентным:
Но что скрывается за такими обозначениями, чем отличается связь, изображаемая одной чертой, от связи, изображаемой двумя чертами?
Вспомним, как образуется молекула этана. Вокруг каждого углеродного атома в результате гибридизации, т. е. смешения, усреднения одной 5- и трех р-орбиталей образуются четыре направленные в разные стороны совершенно одинаковые гибридизованные 5р3-орбитали.

В случае этилена связи между атомами углерода строятся по-другому. Здесь смешиваются только две орбитали с одной орбиталью 5. В результате образуются три гибридизованные 5р2-орбитали, которые лежат в одной плоскости: две из них перекрываются с 5-орбиталями двух атомов водорода и привязывают эти водороды к углероду, а третья орбиталь $р2 перекрывается с точно такой же орбиталью второго углеродного атома. На долю этой связи приходится одна из черточек между двумя атомами углерода. А что символизирует вторая черточка?
Вспомним: у нас остался еще один р-электрон. Он образует облако в виде объемной восьмерки, которая направлена перпендикулярно плоскости трех орбиталей, Эти-то электронные облака (по одной восьмерке от каждого углерода) тоже могут перекрываться между собой, только не «лоб в лоб», как перекрываются две $р2-орбитали, а «боками». Такое перекрывание и обозначает вторая черточка. Связь первого типа («лбами») обозначается греческой буквой а (сигма), а связь, при которой электронные облака перекрываются «боками», называется я-связью (а сами такие электроны — я-электронами). Все вместе это и есть двойная связь. Двойная связь короче простой, ее длина 0,133 мм.
Итак, мы разобрали устройство еще одной детали, из которых можно строить «здания» органических соединений. Какие же это здания?
Возьмем сначала такие сочетания: одна молекула этилена и несколько молекул метана. Если один атом водорода в молекуле этилена заменить на метильную группу (т. е. на остаток метана), то получим пропилен (называемый иначе пропеном) СН2=СН—СНз.
Теперь построим следующий член гомологического ряда (т. е. член, имеющий на одну группу СН2 больше). Для этого заместим один из атомов водорода в пропилене на метильную группу. Возможностей такого замещения несколько, в результате мы получим три различных бутилена (бутена).
Замещая водород метильной группы, придем к нормальному бутену-1: СН2=СН—СН2—СН3. Замещение водорода на другом конце даст бутен-2: СНз—€И=СН—СН3. Наконец, замещая единственный водород при двойной связи, получим мзо-бутилен: СН2=С(СНз)2. Это три различных вещества, имеющих разные температуры кипения и плавления. Состав всех этих углеводородов отражается общей формулой СяН2п. АналогичноВ можно вывести формулы всех возможных пентенов, гексенов и т. д.
Итак, мы научились получать непредельные углеводороды на бумаге. Как же их получают в действительности?
Основной источник простейших алкенов (т. е. непредельных углеводородов)—нефтепродукты, из которых после нагревания и перегонки выделяют этилен.
пропилен, бутилены... Если нагреть алкан (предельный углеводород) до 500—600 °С под большим давлением в присутствии катализатора, то два атома водорода отщепляются и образуется алкен. Из н,-бутана, к примеру, получается смесь бутена-1 и бу-тена-2.
В лаборатории непредельные углеводороды (например, этилен) получают, отнимая воду от спиртов; для этого их нагревают с каталитическим количеством кислоты:
ИДО 200 °с СНз—СН2—ОН ----- СН2=СН2
Можно- также отщеплять молекулу галогеноводо-рода щелочью от галогенопроизводных предельных углеводородов:
НаОН
СНз—СНз—СН2С1 Ш СНз—СН=СН2—НС!
Спектр реакций, в которые вступают соединения с двойной связью, горазда разнообразнее, шире, нежели набор превращений алканов. Рассмотрим одну из таких реакций ненасыщенных соединений.
Непредельные вещества присоединяют галогено-водороды по двойной связи, при этом образуются галогенозамещенные предельные углеводороды (т. е. идет реакция, обратная только что написанной). Но если присоединять галогеноводород к несимметричному алкену. (к такому, у которого но обе стороны от двойной связи находятся различные группы), то могут получиться два разных производных, например, в случае пропена, либо СНзСНгСН2С1, либо СН3СНСЮН3.
Эту реакцию еще в прошлом веке изучал русский химик В. В. Марковников. Он установил правило, которое теперь носит его имя: галоген присоединяется к наименее гидрогенизованному атому углерода (т. е. такому, который связан с наименьшим числом атомов водорода). Значит, из пропилена образуется в основном хлористый изо-пропил СН3СНС1СН3. Но почему реакция идет именно так? Современная теория дает объяснение правила Марковиикова. Мы изложим эту теорию в несколько упрощенном виде.
Дело в том, что механизмы даже простых на первый взгляд химических реакций довольно сложны, включают несколько стадий. Так и с реакцией присоединения галогеноводорода. Молекула хлористого водорода присоединяется к молекуле алкена не сразу, а по частям. Первым присоединяется водород в виде протона Р1+. Положительно заряженный протон подходит к молекуле пропилена. Какой из атомов углерода, соединенных двойной связью, он будет атаковать? Оказывается — крайний, потому что на нем находится небольшой отрицательный заряд, обозначаемый б— (дельта минус). Но как возник этот заряд, небольшой избыток электронной плотности?
В этом «повинна» метильная группа. Она как бы отталкивает от себя электроны, которые поэтому накапливаются у противоположного атома углерода, подальше от метильной группы. Только еще раз подчеркнем, что это смещение электронной плотности очень мало. Оно гораздо меньше, чем если бы целый электрон переселился от среднего атома углерода к крайнему. Тогда бы мы должны были поставить над средним атомом плюс, а над крайним минус (мы же ставим знак д—, что означает малую часть от полного отрицательного заряда электрона).
Итак, теперь ясно, что положительно заряженный протон гораздо охотнее подойдет к крайнему атому углерода, несущему некоторый избыток электронной плотности.
Положительно заряженный протон присоединился к незаряженной молекуле и передал ей свой заряд. Где этот заряд расположится? Если бы протон присоединился к среднему атому углерода, то заряд возник бы на крайнем углероде. На самом деле протон подходит к крайнему атому углерода, и заряд возникает на среднем углероде, А есть ли разница, где сосредоточен заряд? Да, и разница большая. Оба кар-бокатиона (т. е. органические частицы, несущие положительный заряд на атоме углерода) неустойчивы, живут очень недолго. Но все же второй катион устойчивее: дело в том, что он с двух сторон окружен ме-тильными группами; а мы уже знаем, что метильные группы способны подавать электроны, отталкивать их от себя. Получается, что метильные группы частично компенсируют возникающий положительный заряд. А чем меньше этот заряд, тем карбокатион устойчивее. В первом случае положительный заряд погашается лишь одной этильной группой, этот карбокатион будет менее устойчив, чем второй.
Как правило, чем устойчивее какая-нибудь частица, тем она легче образуется. А это значит, что второй карбокатион будет получаться гораздо чаще первого. Вторая стадия реакции — присоединение отрицательно заряженного иона хлора к карбокатиону. Поскольку в продуктах первой стадии преобладает карбокатион второго типа, то в результате всей реакции на одну молекулу 1-хлорпропана приходятся тысячи молекул изомера, в котором хлор присоединен к среднему углероду. Поэтому мы и говорим, что присоединение идет в основном по правилу Марковникова. Два фактора — место атаки протона на первой стадии и устойчивость образующегося после этого карбокатиона — обусловливают выполнение этого правила.
Непредельные соединения легко присоединяют не только хлористый водород, но и. многие другие молекулы. Характерные примеры химических превращений этилена приведены на схеме.
У читателя может возникнуть вопрос: существуют ли органические молекулы, построенные только из этиленовых блоков? Да, существуют. И простейший представитель — бутадиен СН2=СН—СН=СН2. Это соединение широко используется в производстве синтетического каучука. В помидорах, фруктах обнаружен углеводород ликопин — кристаллы красного цвета. В углеродной цепочке этого вещества 13 двойных связей.

В которой один из атомов отдавал электрон и становился катионом , а другой атом принимал электрон и становился анионом .

Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные - двухатомная молекула состоит из одинаковых атомов (H 2 , Cl 2 , N 2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные - двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождая дипольный момент молекулы).

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов . Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Однако, дважды лауреат Нобелевской премии Л. Полинг указывал, что «в некоторых молекулах имеются ковалентные связи, обусловленные одним или тремя электронами вместо общей пары» . Одноэлектронная химическая связь реализуется в молекулярном ионе водорода H 2 + .

Молекулярный ион водорода H 2 + содержит два протона и один электрон. Единственный электрон молекулярной системы компенсирует электростатическое отталкивание двух протонов и удерживает их на расстоянии 1,06 Å (длина химической связи H 2 +). Центр электронной плотности электронного облака молекулярной системы равноудалён от обоих протонов на боровский радиус α 0 =0,53 А и является центром симметрии молекулярного иона водорода H 2 + .

Энциклопедичный YouTube

  • 1 / 5

    Ковалентная связь образуется парой электронов, поделённой между двумя атомами, причём эти электроны должны занимать две устойчивые орбитали, по одной от каждого атома .

    A· + ·В → А: В

    В результате обобществления электроны образуют заполненный энергетический уровень. Связь образуется, если их суммарная энергия на этом уровне будет меньше, чем в первоначальном состоянии (а разница в энергии будет ни чем иным, как энергией связи).

    Согласно теории молекулярных орбиталей, перекрывание двух атомных орбиталей приводит в простейшем случае к образованию двух молекулярных орбиталей (МО): связывающей МО и антисвязывающей (разрыхляющей) МО . Обобществлённые электроны располагаются на более низкой по энергии связывающей МО.

    Образование связи при рекомбинации атомов

    Однако, механизм межатомного взаимодействия долгое время оставался неизвестным. Лишь в 1930 г. Ф. Лондон ввёл понятие дисперсионное притяжение - взаимодействие между мгновенным и наведённым (индуцированными) диполями. В настоящее время силы притяжения, обусловленные взаимодействием между флуктуирующими электрическими диполями атомов и молекул носят название «Лондоновские силы ».

    Энергия такого взаимодействия прямо пропорциональна квадрату электронной поляризуемости α и обратно пропорциональна расстоянию между двумя атомами или молекулами в шестой степени .

    Образование связи по донорно-акцепторному механизму

    Кроме изложенного в предыдущем разделе гомогенного механизма образования ковалентной связи, существует гетерогенный механизм - взаимодействие разноименно заряженных ионов - протона H + и отрицательного иона водорода H - , называемого гидрид-ионом :

    H + + H - → H 2

    При сближении ионов двухэлектронное облако (электронная пара) гидрид-иона притягивается к протону и в конечном счёте становится общим для обоих ядер водорода, то есть превращается в связывающую электронную пару. Частица, поставляющая электронную пару, называется донором, а частица, принимающая эту электронную пару, называется акцептором. Такой механизм образования ковалентной связи называется донорно-акцепторным .

    H + + H 2 O → H 3 O +

    Протон атакует неподелённую электронную пару молекулы воды и образует устойчивый катион, существующий в водных растворах кислот .

    Аналогично происходит присоединение протона к молекуле аммиака с образованием комплексного катиона аммония :

    NH 3 + H + → NH 4 +

    Таким путём (по донорно-акцепторному механизму образования ковалентной связи) получают большой класс ониевых соединений , в состав которого входят аммониевые , оксониевые, фосфониевые, сульфониевые и другие соединения .

    В качестве донора электронной пары может выступать молекула водорода, которая при контакте с протоном приводит к образованию молекулярного иона водорода H 3 + :

    H 2 + H + → H 3 +

    Связывающая электронная пара молекулярного иона водорода H 3 + принадлежит одновременно трём протонам.

    Виды ковалентной связи

    Существуют три вида ковалентной химической связи, отличающихся механизмом образования:

    1. Простая ковалентная связь . Для её образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными.

    • Если атомы, образующие простую ковалентную связь, одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующие связь, в равной степени владеют обобществлённой электронной парой. Такая связь называется неполярной ковалентной связью . Такую связь имеют простые вещества , например: 2 , 2 , 2 . Но не только неметаллы одного типа могут образовывать ковалентную неполярную связь. Ковалентную неполярную связь могут образовывать также элементы-неметаллы, электроотрицательность которых имеет равное значение, например, в молекуле PH 3 связь является ковалентной неполярной, так как ЭО водорода равна ЭО фосфора.
    • Если атомы различны, то степень владения обобществлённой парой электронов определяется различием в электроотрицательностях атомов. Атом с большей электроотрицательностью сильнее притягивает к себе пару электронов связи, и его истинный заряд становится отрицательным. Атом с меньшей электроотрицательностью приобретает, соответственно, такой же по величине положительный заряд. Если соединение образуется между двумя различными неметаллами , то такое соединение называется ковалентной полярной связью .

    В молекуле этилена С 2 Н 4 имеется двойная связь СН 2 =СН 2 , его электронная формула: Н:С::С:Н. Ядра всех атомов этилена расположены в одной плоскости. Три электронных облака каждого атома углерода образуют три ковалентные связи с другими атомами в одной плоскости (с углами между ними примерно 120°). Облако четвёртого валентного электрона атома углерода располагается над и под плоскостью молекулы. Такие электронные облака обоих атомов углерода, частично перекрываясь выше и ниже плоскости молекулы, образуют вторую связь между атомами углерода. Первую, более прочную ковалентную связь между атомами углерода называют σ-связью; вторую, менее прочную ковалентную связь называют π {\displaystyle \pi } -связью.

    В линейной молекуле ацетилена

    Н-С≡С-Н (Н: С::: С: Н)

    имеются σ-связи между атомами углерода и водорода, одна σ-связь между двумя атомами углерода и две π {\displaystyle \pi } -связи между этими же атомами углерода. Две π {\displaystyle \pi } -связи расположены над сферой действия σ-связи в двух взаимно перпендикулярных плоскостях.

    Все шесть атомов углерода циклической молекулы бензола С 6 H 6 лежат в одной плоскости. Между атомами углерода в плоскости кольца действуют σ-связи; такие же связи имеются у каждого атома углерода с атомами водорода. На осуществление этих связей атомы углерода затрачивают по три электрона. Облака четвёртых валентных электронов атомов углерода, имеющих форму восьмерок, расположены перпендикулярно к плоскости молекулы бензола. Каждое такое облако перекрывается одинаково с электронными облаками соседних атомов углерода. В молекуле бензола образуются не три отдельные π {\displaystyle \pi } -связи, а единая π {\displaystyle \pi } диэлектрики или полупроводники . Типичными примерами атомных кристаллов (атомы в которых соединены между собой ковалентными (атомными) связями) могут служить

    Этилен для органической химии - это уже, пожалуй, не кирпичик, а целый блок. Молекула этилена состоит из двух атомов углерода и четырех атомов водорода, Как же построен этилен? Ведь во всех органических соединениях углерод должен быть четырехвалентным, а в молекуле этилена каждый углеродный атом связан с другим углеродом и двумя водородами, т. е. как бы трехвалентен.

    Нет, никакого нарушения принципа четырехвалентности углерода в молекуле этилена не наблюдается: два атома углерода связаны между собой не простой, как в этане, а двойной связью . Каждая валентность обозначается чертой, и если соединить два атома углерода двумя черточками, то мы сохраним углерод четырехвалентным:

    Но что скрывается за такими обозначениями, чем отличается связь, изображаемая одной чертой, от связи, изображаемой двумя чертами?

    Вспомним, как образуется молекула этана. Вокруг каждого углеродного атома в результате гибридизации, т. е. смешения, усреднения одной s - и трех р -орбиталей образуются четыре направленные в разные стороны совершенно одинаковые гибридизованные sр 3 -орбитали.

    В случае этилена связи между атомами углерода строятся по-другому. Здесь смешиваются только две р -орбитали с одной орбиталью s . В результате образуются три гибридизованные sp 2 -орбитали, которые лежат в одной плоскости: две из них перекрываются с s -орбиталями двух атомов водорода и привязывают эти водороды к углероду, а третья орбиталь sp 2 перекрывается с точно такой же орбиталью второго углеродного атома. На долю этой связи приходится одна из черточек между двумя атомами углерода. А что символизирует вторая черточка?

    Вспомним: у нас остался еще один р-электрон. Он образует облако в виде объемной восьмерки, которая направлена перпендикулярно плоскости трех sp 2 -орбиталей. Эти-то электронные облака (по одной восьмерке от каждого углерода) тоже могут перекрываться между собой, только не "лоб в лоб", как перекрываются две sр 2 -орбитали, а "боками". Такое перекрывание и обозначает вторая черточка. Связь первого типа ("лбами") обозначается греческой буквой о (сигма), а связь, при которой электронные облака

    перекрываются "боками", называется π-связью (а сами такие электроны - π-электронами). Все вместе это и есть двойная связь. Двойная связь короче простой, ее длина 0,133 нм.

    Итак, мы разобрали устройство еще одной детали, из которых можно строить "здания" органических соединений. Какие же это здания?

    Возьмем сначала такие сочетания: одна молекула этилена и несколько молекул метана. Если один атом водорода в молекуле этилена заменить на метильную группу (т. е. на остаток метана), то получим пропилен (называемый иначе пропеном) СН 2 =СН-СН 3 .

    Теперь построим следующий член гомологического ряда (т. е. член, имеющий на одну группу СН 2 больше). Для этого заместим один из атомов водорода в пропилене на метильную группу. Возможностей такого замещения несколько, в результате мы получим три различных бутилена (бутена).

    Замещая водород метильной группы, придем к нормальному бутену-1: СН 2 =СН-СН 2 -СН 3 . Замещение водорода на другом конце даст бутен-2: СН 3 -СН=СН-СH 3 . Наконец, замещая единственный водород при двойной связи, получим изо -бутилен: СН 2 =С(СН 3) 2 . Это три различных вещества, имеющих разные температуры кипения и плавления. Состав всех этих углеводородов отражается общей формулой С n Н 2n . Аналогично можно вывести формулы всех возможных пентенов, гексенов и т. д.

    Итак, мы научились получать непредельные углеводороды на бумаге. Как же их получают в действительности?

    Основной источник простейших алкенов (т. е. непредельных углеводородов)-нефтепродукты, из которых после нагревания и перегонки выделяют этилен, пропилен, бутилены... Если нагреть алкан (предельный углеводород) до 500-600 °С под большим давлением в присутствии катализатора, то два атома водорода отщепляются и образуется алкен. Из н -бутана, к примеру, получается смесь бутена-1 и бутена-2.

    В лаборатории непредельные углеводороды (например, этилен) получают, отнимая воду от спиртов; для этого их нагревают с каталитическим количеством кислоты:

    Можно также отщеплять молекулу галогеноводорода щелочью от галогенопроизводных предельных углеводородов:

    Спектр реакций, в которые вступают соединения с двойной связью, гораздо разнообразнее, шире, нежели набор превращений алканов. Рассмотрим одну из таких реакций ненасыщенных соединений.

    Непредельные вещества присоединяют галогеноводороды по двойной связи, при этом образуются галогенозамещенные предельные углеводороды (т. е. идет реакция, обратная только что написанной). Но если присоединять галогеноводород к несимметричному алкену (к такому, у которого по обе стороны от двойной связи находятся различные группы), то могут получиться два разных производных, например, в случае пропена, либо СН 3 СН 2 СН 2 Сl, либо СН 3 СНClСН 3 .

    Эту реакцию еще в прошлом веке изучал русский химик В. В. Марковников. Он установил правило, которое теперь носит его имя: галоген присоединяется к наименее гидрогенизованному атому углерода (т. е, такому, который связан с наименьшим числом атомов водорода). Значит, из пропилена образуется в основном хлористый изо -пропил СН 3 СНClСН 3 . Но почему реакция идет именно так? Современная теория дает объяснение правила Марковникова. Мы изложим эту теорию в несколько упрощенном виде.

    Дело в том, что механизмы даже простых на первый взгляд химических реакций довольно сложны, включают несколько стадий. Так и с реакцией присоединения галогеноводорода. Молекула хлористого водорода присоединяется к молекуле алкена не сразу, а по частям. Первым присоединяется водород в виде протона Н+. Положительно заряженный протон подходит к молекуле пропилена. Какой из атомов углерода, соединенных двойной связью, он будет атаковать? Оказывается - крайний, потому что на нем находится небольшой отрицательный заряд, обозначаемый δ- (дельта минус). Но как возник этот заряд, небольшой избыток электронной плотности?

    В этом "повинна" метальная группа. Она как бы отталкивает от себя электроны, которые поэтому накапливаются у противоположного атома углерода, подальше от метильной группы. Только еще раз подчеркнем, что это смещение электронной плотности очень мало. Оно гораздо меньше, чем если бы целый электрон переселился от среднего атома углерода к крайнему. Тогда бы мы должны были поставить над средним атомом плюс, а над крайним минус (мы же ставим знак δ-, что означает малую часть от полного отрицательного заряда электрона).

    Итак, теперь ясно, что положительно заряженный протон гораздо охотнее подойдет к крайнему атому углерода, несущему некоторый избыток электронной плотности.


    Положительно заряженный протон присоединился к незаряженной молекуле и передал ей свой заряд. Где этот заряд расположится? Если бы протон присоединился к среднему атому углерода, то заряд возник бы на крайнем углероде. На самом деле протон подходит к крайнему атому углерода, и заряд возникает на среднем углероде.. А есть ли разница, где сосредоточен заряд? Да, и разница большая. Оба карбокатиона (т. е. органические частицы, несущие положительный заряд на атоме углерода) неустойчивы, живут очень недолго. Но все же второй катион устойчивее: дело в том, что он с двух сторон окружен метальными группами; а мы уже знаем, что метальные группы способны подавать электроны, отталкивать их от себя. Получается, что метальные группы частично компенсируют возникающий положительный заряд, А чем меньше этот заряд, тем карбокатион устойчивее. В первом случае положительный заряд. погашается лишь одной этильной группой, этот карбокатион будет менее устойчив, чем второй.

    Как правило, чем устойчивее какая-нибудь частица, тем она легче образуется. А это значит, что второй карбокатион будет получаться гораздо чаще первого. Вторая стадия реакции - присоединение отрицательно заряженного иона хлора к карбокатиону. Поскольку в продуктах первой стадии преобладает карбокатион второго типа, то в результате всей реакции на одну молекулу 1-хлорпропана приходятся тысячи молекул изомера, в котором хлор присоединен к среднему углероду. Поэтому мы и говорим, что присоединение идет в основном по правилу Марковникова. Два фактора - место атаки протона на первой стадии и устойчивость образующегося после этого карбокатиона - обусловливают выполнение этого правила.

    Непредельные соединения легко присоединяют не только хлористый водород, но и многие другие молекулы. Характерные примеры химических превращений этилена приведены на схеме.

    У читателя может возникнуть вопрос: существуют ли органические молекулы, построенные только из этиленовых блоков? Да, существуют. И простейший представитель - бутадиен СН 2 =СН-СН=СН 2 . Это соединение широко используется в производстве синтетического каучука. В помидорах, фруктах обнаружен углеводород ликопин - кристаллы красного цвета. В углеродной цепочке этого вещества 13 двойных связей.